2022年11月21日星期一

Plastic Injection Molding: The Cooling Rate Process

 

 

In plastic injection molding, the cooling rate is the last section of the molding cycle.

The cooling rate is a decreasing rate from the time the plastic resin enters the mold until the last cavity of the mold is filled.

The cooling process is complete when the temperature is no longer reducing, and any additional time spent to cool the part is useless.

When the cooling process is complete, it is safe to remove the part from the mold.

Factors that affect the cooling rate and the final molded part


Mold Cavity Pressure

The cooling rate is monitored, measured, and displayed on a pressure curve. It is displayed this way because as the plastic resin cools, it shrinks, which reduces the mold cavity pressure.

Mold Temperature

In plastic injection molding, the temperature of the mold itself can be a factor in the cooling rate process. Aside from affecting mold cooling lines, mold temperature can affect part blemishes, like:

  • Mold Warpage
  • Sink Marks
  • Jetting

Improper mold temperature can also impact properties, such as:

  • Molded-in Stress
  • Fatigue Resistance
  • Wear Resistance
  • Creep Resistance
  • Molecular Weight
  • Dimensional Stability

The cooling rate can also be affected by the use of metals that conduct heat away.

The cooling process is complete when the temperature is no longer reducing and any additional time spent to cool the part is useless.

When the cooling process is complete, it is safe to remove the part from the mold.

TIP: During the plastic mold design phase, you must consider the best possible cooling channels for the mold. Using a plastic molder with a deep knowledge of cooling rate process optimization will allow for better control over the mold temperature, and thus, the cooling rate. It will also provide the best cycle time and the best outcome for a good, stress-reduced molded part.

How to Calculate Cooling Time?


Cooling time in injection molding is a critical part of the production process. It is the amount of time the molten plastic takes to solidify. An adequate cooling system is required to transfer heat away from the mold and maintain a stable cooling rate, ensuring the highest quality final products.

One of the quickest methods for estimating the cooling time is using a formula that accounts for the thickness of the part in an equation based on the effective thermal diffusivity. The thermal diffusivity estimates the transfer of heat in and out of material.

 

Since its establishment, WIT MOLD has successfully exported more than 2000 sets of molds with different types of structures and designs, which are applied to a variety of industries.

2022年11月9日星期三

Advantages And Disadvantages of Two-shot Injection Molding

 

There are a variety of manufacturing methods used to create products using plastic polymers, including two-shot injection molding, compression thermoset molding and extrusion. While all of these are viable manufacturing processes, there are several advantages to this process that make it the top choice for many plastics manufacturers. The process is relatively simple; one material is injected into a mold in order to make the initial section of the product, followed by a second injection of a secondary material that is compatible with the original material. There are three good reasons many manufacturers use this method of manufacturing plastics or polymers.

Advantages of two-shot injection molding

Two-shot injection molding is cost-effective

The two-step process needs only one machine cycle, rotating the initial mold out of the way and putting the secondary mold around the product so that the second, compatible thermoplastic can be inserted into the second mold. Because the technique uses only one cycle instead of separate machine cycles, it costs less for any production run and requires fewer employees to make the finished product while delivering more items per run. It also ensures a strong bond between the materials without the need for further assembly down the line.

Enhanced product quality

Two-shot injection molding enhances the quality of most thermoplastic items in several ways:

ㆍImproved esthetics. Items look better and are more appealing to the consumer when they are crafted of different colored plastics or polymers. The merchandise looks more expensive if it utilizes more than one color or texture
ㆍImproved ergonomics. Because the process allows for the use of soft-touch surfaces, the resulting items can have ergonomically designed handles or other parts. This is particularly important for tools, medical devices, and other hand-held items.
ㆍIt provides for a better seal when silicone plastics and other rubbery materials are used for gaskets and other parts that require a strong seal.
ㆍIt lets you combine both hard and soft polymers for outstanding comfort and utility for even the smallest of products.
ㆍIt can greatly reduce the number of misalignments when compared to over-molding or more traditional insert processes.
ㆍIt enables manufacturers to create more complex mold designs using multiple materials that can’t be effectively bonded using other processes.
ㆍThe bond created is exceptionally strong, creating a product that is more durable, more reliable, and with longer life.

Versatility

Product manufacturers favor a wide range of applications for two-shot injection molding, including automotive interior parts, medical equipment, tools, and toys. It allows manufacturers to combine various materials and colors to create a strong and attractive final product. Some materials can be effectively combined with this process, including silicone and thermoplastics, nylon and thermoplastic elastomers, or hard nylon and soft-touch materials.

Two-shot injection molding can solve your company’s product production difficulties. An experienced plastic manufacturer can guide you from concept to finished product and ensure a cost-effective solution.

Producing an assembly with multiple components

Compared to other methods of plastic molding, two-shot is ultimately a more cost-efficient way of producing an assembly with multiple components. Here’s why:

Part Consolidation: Two-shot injection molding reduces the number of components in a finished assembly, eliminating an average of $40K in development, engineering, and validation costs associated with each additional part number.

Improved Efficiency: Two-shot molding allows multiple components to be molded with a single tool, reducing the amount of labor needed to run your parts and eliminating the need to weld or join components after the molding process.

Improved Quality: Two-shot is carried out within a single tool, allowing for lower tolerances than other molding processes, a high level of accuracy and repeat-ability, and reduced scrap rates.

Complex Moldings: Two-shot injection molding allows for the creation of complex mold designs that incorporate multiple materials for functionality that cannot be achieved through other molding processes.

Disadvantages of two-shot injection molding

1) High tooling costs and long setup lead times. Up-front costs are high due to the design, testing, and tooling required. There is the initial design and prototyping (probably via CNC or 3D printing), then the design of a prototype mold tool to produce replicas of the part in volume. Lastly, and only after extensive testing during both stages, you can finally inject mold apart.

2) Part design restrictions. Plastic parts must be designed with injection molding consideration and must follow the basic rules of injection molding, for example:

Avoid undercuts and sharp edges as much as possible

Use uniform wall thicknesses to prevent inconsistencies in the cooling process resulting in defects like sink marks.

Draft angles are encouraged for better de-molding.

Don’t forget, because tools are typically made from steel or aluminum, it can be difficult to make design changes. If you need to add plastic to the part, you can make the tool cavity larger by cutting away steel or aluminum. But in order to take away plastic, you need to decrease the size of the tool cavity by adding aluminum or metal to it. This is extremely difficult and in many cases might mean scrapping the tool (or part of it) and starting over.

Also, the weight and size of the part will determine the tool size and necessary press size. The larger the part, the more difficult and expensive it will be.

3) Small runs of parts can be costly. Due to the complexity of tooling, and the necessity to rid the machine of all previous material before the next product can be made, the setup time can be quite lengthy. Therefore small runs of parts have traditionally always been thought of as too expensive to injection mold.

 

We are an injection mold manufacturer. If you are interested in our products, please feel free to contact us.

2022年10月18日星期二

What Are The Requirements For Injection Molding Machines For Precision Injection Molding?

HIGH PRECISION MOLDS

 

Precision injection molding machine refers to the molding machinery and equipment that is suitable for molding and producing precision plastic products. For a precision injection molding machine, how should we measure or judge it?

Many precision injection molding also requires injection molding machines with

① High injection pressure and high injection speed.
②Mold clamping system with sufficient rigidity and clamping accuracy. The so-called clamping accuracy refers to the uniformity, adjustability, stability and repeatability of the clamping force, and high accuracy of the opening and closing position of the mold.
③The pressure, flow, temperature and metering can be controlled precisely to the corresponding accuracy, and multi-stage injection can be used to ensure the reproduction of the molding process and the repetition accuracy of the products, etc.

The benefits of high-pressure molding that can be realized by precision injection molding machine

A. Improve the precision and quality of precision products.
The injection pressure has the most obvious effect on the shrinkage rate of the product molding. When the injection pressure reaches 392 MPa, the shrinkage rate of the product molding is almost zero. And the precision of the products at this time is only affected by the mold control or environment. Experimental evidence: injection pressure from 98 to 392 MPa, the mechanical strength of the parts can be increased by 3 to 33%.

 

HIGH PRECISION MOLDS

B. The wall thickness of precision products can be reduced and the molding length can be improved.
Take PC as an example, ordinary machine injection pressure of 177 Mpa can mold 0.8mm wall thickness products, while precision machine injection pressure of 392 MPa can mold products with thickness of 0.45mm or more. Ultra-high pressure injection machine can obtain products with greater flow length ratio.
C. Increase the injection pressure can fully develop the efficacy of injection rate.

The performance of injection molding machine to achieve precision injection molding

Injection molded products have been applied to various fields and widely used to replace metal parts with high precision, thus putting forward strict requirements on the dimensional accuracy, quality accuracy, apparent quality and mechanical properties of injection molded parts. At the same time, the process factors affecting the quality of injection molded products have also put forward higher requirements.
The ideal state of injection molding machine control is to directly control the product size, quality, apparent quality, mechanical properties of the variables as feedback signals for feedback control. However, for the time being, direct measurement and conversion of these non-electrical quantities into electrical signals has not been solved, so it can only be solved by controlling the controllable variables of the injection molding machine that affect the quality of the above mentioned products.

 

We are a precision injection molding company, please feel free to contact us if you need.

2022年9月28日星期三

Two-Shot Molding vs. Overmolding

Injection molding is a popular manufacturing process, which can quickly produce complex-shaped precise parts without wasting a lot of materials.

Many different processes belong to the category of injection molding, including over-molding and two-shot molding. The two processes are similar, but there are some key differences-here are what engineers and designers need to know:

What is two-shot molding?

 

Two Shot Injection Molds, also known as dual-molds, double-shot molds, or multi-shot molds, are a subcategory of injection molding that allows engineers to create multi-material or multi-colored parts without adding additional assembly steps.

Through the different layers of materials or colors created by the injection molding machine, the two-shot injection molding process is best understood. The first material is injected into the mold to create the substrate, and other materials or materials will be molded around the substrate. After the substrate solidifies and cools, it is transferred by hand, robotic arm, or rotating plane to another cavity of the mold.

From there, the mold opens and rotates 180° with one side of the substrate to meet the other mold chamber and injection molding nozzle. Once the substrate is in place, the second material is injected and combined with the substrate to form a firm hold. Once the second layer has cooled, the last part will be sprayed out.

Engineers should know that Two Shot Mold can be accelerated or slowed down, depending on how the substrate is transferred to another cavity of the mold. Hand and robot arm transfer takes longer than the rotating plane, but the rotating platen molding is more expensive, usually, there are only high-efficiency options, mass production runs.

In addition, it is very important that the material of the mold is easy to bond, and the mold must be aligned to prevent deformation of the parts.

Advantages and disadvantages of two-shot molding

 

Two-shot injection molding is efficient and economical manufacturing technology. This process also produces highly durable terminal parts and assemblies.

From a design point of view, two-shot molding provides designers with a lot of flexibility, because this process can create complex geometric shapes and adapt to multiple colors to produce more beautiful parts.

In addition, because one machine manufactures the entire part, no post-processing is required, and engineers can greatly reduce manufacturing time, thereby reducing costs. However, it is worth noting that the initial two-shot injection molding machine may be costly, and the two-shot injection molding machine is more expensive than the standard injection molding machine. Fortunately, these costs are usually offset by labor savings and assembly costs for large-scale production runs.

What is over-molding?

 

Overmolding, like Two Shot Moulding, is a multi-shot injection molding process that produces a single final product from two or more different thermoplastics. This process is ideal for engineers who want to build components that are powerful, functional, beautiful, and that will not separate over time.

At the beginning of the over-molding process, engineers inject the substrate with a harder over-molding material. Then, the substrate is placed in an over-mold tool or an over-mold cavity within the same mold. The molten-over mold material is then sprayed into, onto, or around the substrate. After the molten material is cooled, the substrate and the over-mold are chemically or mechanically combined. The entire over-molding process only takes 30 seconds.

The product team must remember that all thermoplastics used in the over-molding process must be chemically or thermally compatible with each other. Compatibility with metal substrates is usually not a problem, because they can be used with any plastic over mold, but the product team may encounter compatibility issues when using plastic over molds. If the substrate and mold are not compatible, the final product may be deformed or poorly bound.

However, if two less compatible plastics must be used, the team can design mechanical bonding properties for the part after the fact, although this may result in higher costs.

Advantages and disadvantages of over-molding

 

Overmolding and two-shot injection molding have many of the same advantages. They are ideal for quickly creating durable, reliable, and vibration-resistant parts with complex geometries, but over-molding is best suited for low-volume production runs.

Compared with two-shot molding, over-mold design is also easier, because engineers can use any standard injection molding machine to carry out this process.

In terms of disadvantages, the tolerances of over-molded parts are often lower than those of two-shot injection molding. It is also important to remember that plastic compatibility requirements may constrain designers.

2022年9月16日星期五

Common Defects Of Injection Molds And Their Solutions

 injection mold

 

An injection mold is a tool for producing plastic products and for giving them a complete structure and precise dimensions. Read on for more information about common problems and solutions for injection molds.

 

A mismatch between mold and injection molding machine

Causes:

1. Positioning ring position is not correct, size is too big or too small.

2. Wrong position and size of the ejector hole of the mold; wrong position and size of the forced pull reset hole.

3. Mold width size is too big; mold height size is too small.

Solution:

1. Adjust the ejector hole position and size; adjust the reset hole position and size.

2. Replace the positioning ring; adjust the position and size of the positioning ring.

3. Change the tonnage of a large injection molding machine; increase the thickness of the mold.

 

Bad quality of parts

Causes:

1. The fit-gap is too large.

2. Poor glue walking, trapped air.

3. Ejector pin is too small, uneven ejection.

4. Too small bevel, burr, hardness is not enough.

5. Uneven injection pressure, insufficient strength of product form.

6. Processing error.

7. Far from the gate, low mold temperature.

Solution:

1. Trim the gate, pressure uniformity, strengthen the product strength.

2. Reasonable adjustment of clearance and grinding work part of the parting surface.

3. Improve the gate, increase the mold temperature.

4. Add local glue, add exhaust.

5. Re-processing.

6. Increase the ejector pin, evenly distributed.

7. Repair burr, increase slope, nitriding.

 

injection mold

 

The parts are difficult to fill and difficult to take

Causes:

1. The pouring system is blocked, the runner cross-section size is too small, the gate arrangement is unreasonable, and the gate size is small.

2. The limit stroke of the mold is not enough, the extraction stroke of the mold is not enough, the ejecting stroke of the mold is not enough.

Solution:

1. Check whether the limit, core extraction, and ejection strokes meet the design requirements and adjust the strokes that do not meet the requirements.

2. Check the runner and gate of each section of the pouring system, and fix the parts concerned.

 

Mold opening and closing ejecting reset action is not smooth

Causes:

1. Slanting ejector, ejector pin sliding is not smooth.

2. Mold frame guide column, guide sleeve sliding is not smooth, with too tight

3. Reset spring elasticity or pre-pressure is not enough.

Solution:

1. Increase or replace the spring.

2. Repair or replace the guide pillar, guide bush.

3. Check and repair the slanting top, ejector pin.

 

Mold water transportation is not working or water leakage

Causes:

1. Water sealing rubber ring and water pipe joint are not sealed enough.

2. The mold water channel is blocked and the inlet and outlet water pipe joints are connected in the wrong way.

Solution:

1. Check the cooling system inlet and outlet water pipe joints connection and each section of the waterway, repair the relevant parts.

2. Check the water sealing rubber ring and water pipe joints, repair or replace the parts.

 

WIT MOLD is a very professional mold design and mold manufacturer located in southern China and has passed the ISO2009:2015 international quality Our injection molding process can be customized according to your unique project. If you are interested, please feel free to contact us.

Complete Guide to Injection Molding

  Injection molding is one of the most widely used manufacturing processes for producing plastic parts. Whether you’re an engineer, designer...