2022年3月23日星期三

Three Questions You Need to Consider before Choosing Precision Molding

 

 

If you need a plastic part molded with extreme precision—for example, to ensure there’s no air leak between two molded sections or to be certain there’s no visible seal gap line—you likely require precision molding. The difference between a typical injection molded part and a precision molded part is the tolerance, or acceptable range of variation in dimension: While the majority of injection molded parts have a tolerance of +/- .005″, precision molding holds tolerances between +/- .002″ and +/- .001″ (or less, in some cases).

Let’s say, for example, you’re planning to manufacture a military projectile. In order for the projectile to fit properly in the firearm, handle the acceleration when it’s launched, and explode on impact, it requires very high precision.

If your application requires precision molding, you can’t leave anything to chance—so you’ll want to ask yourself the following three questions before you begin the process:

1. Have you selected a plastic material with low shrinkage?

The plastic material you select for your part makes a big difference in whether you’ll be able to do precision molding. For example, polypropylene has a shrinkage range of +/- .014″ to +/- .022″, with an average of +/- .018″. This is a wide range for shrinkage, which makes hitting a specific tolerance extremely difficult. If you’re molding a toothbrush (which commonly uses polypropylene), dealing with shrinkage isn’t a big concern, as the toothbrush will function appropriately regardless of whether it’s slightly bigger or smaller than its counterparts. Acrylonitrile butadiene styrene (ABS)—another common thermoplastic polymer—has a much narrower shrinkage average of +/- .006″. That gives you a much better chance of hitting a tighter tolerance, but it still won’t reach the +/- .001″ or +/- .002″ tolerance needed for a precision part.

One way to hit high tolerances with your plastic material is to add glass or another filler resin (like carbon fiber or mica) into the material. This can minimize shrinkage and warp by providing more structure in the material. For example, if you include long glass fibers in a polymer material, the part will shrink more perpendicular to those fibers.

2. Have you determined which areas of the mold require precision?

Because precision molding is more expensive than typical injection molding, be certain which aspects of your part require tight tolerances—and whether those tolerances can be achieved through injection molding—before moving forward. For example, a surgical handle may only require precision for the piece that will connect with a pin, not the entire handle. Identifying your precision requirements from the get-go ensures you’ll get what you need without wasting money. In the case of the surgical handle, your injection molding partner may advise you to add the tolerances you need through tooling after the injection molding process is complete.

3. Can the mold manufacturer you’ve selected tool with high precision?

The process of creating plastic parts with tight tolerances begins with a high-precision mold. If each plastic part you create is not identical, you won’t have a precise product—and a precise mold ensures there’s no variation for each part. Because of this, it’s extremely important to select a mold manufacturer who understands the slow, steady process of building a high-precision tool. Keep in mind that selecting a mold manufacturer that specializes in rapid tooling is likely not your best option, as the goal of rapid tooling is to finish the mold quickly—but not necessarily precisely.

Let’s get your precision molding project started

We have years of experience in precision molding, and would love to answer any and all of your questions. You can either contact us with those questions, or, if you’re ready to get your project started now, simply contact us and request a free quote.

2022年3月9日星期三

The Ultimate Guide to Gas Assist Injection Molding

 

 

What is Gas Assist Injection Molding?

Gas assist injection molding (GAIM) is an enhanced injection molding process often applied for complex parts, large parts and parts requiring an attractive, cosmetic finish.

The types of parts benefiting most from this process include:

  • large panels
  • enclosures
  • handles
  • doors and bezels
  • tube or rod-shaped parts

How Does Gas Assist Work?

The gas assist process is introduced at the finish of the mold filling stage while the resin is still liquid.  Pressurized gas (usually nitrogen) is used in place of pack pressure from the molding machine.  The pressure from the gas completes the filling of the mold cavity, forcing an even distribution of molten resin against the mold. The gas is held inside during the entire cooling phase and then is vented, leaving a hollow void.  For internal gas-assist molding, the void is inside the plastic.  For external gas assist molding, the void is on the outside surface, typically the backside of a part.

Benefits with Gas Assist

The gas-assist process gets results when part design elements make the part difficult to manufacture using straight injection molding.  GAIM allows for more design flexibility while still being able to provide these benefits:

  • Thin-walled parts with greater strength and rigidity
  • Creation of hollowed out areas, reducing part weight
  • Reduction of molded-in stress for improved dimensional stability
  • Better surface finish with no sink marks
  • Less part shrinkage and reduced warpage

Design Advantages with Gas Assist

1. Complex Designs

For the design engineer, using GAIM expands design options and helps to minimize design changes to make the part manufacturable using injection molding. One of the greatest benefits is the ability to produce complex parts.  Oftentimes with straight injection molding, parts having different wall thicknesses are molded separately and assembled later.

GAIM allows multiple parts to be combined into one, reducing the need for secondary assembly processes – even if the parts have different wall thicknesses.  This is because gas-assist allows heavy wall sections to intersect thinner ones. Support ribs and bosses can achieve tighter tolerances and be designed larger without fear of sink marks. Gas channels are directed toward these areas and the consistent pressure during the cooling phase eliminates sink marks, associated with these support features, on the front side of the part.

2. Metal Replacement

Gas-assist allows the production of thin-walled components that have solid but hollow areas.  The resulting strength and lightweight part can often replace metal fabricated or die cast parts, and reduce product cost.

3. Large parts

The introduction of gas pressure aids in mold filling, providing uniform pressure throughout the part that lasts through the cooling stage. The result is a part with less shrinkage and reduced warpage. Part weight can also be reduced by creating hollowed out areas.

4. Cosmetic finishes

Where an attractive finished surface is required, gas-assist prevents sink areas that eliminate or at least minimize secondary operations to improve part appearance including sanding and priming.

5. Hollow parts

The gas can create hollowed out areas within parts like handles, which decreases part weight and still provides strength.

 

Gas Assist Molds

 

Cost Benefits with Gas Assist

1. Extended Tool Life

With gas-assist, lower clamping force is required because lower pressures are used.  This results in less mold wear extending the life of the tool.

2. Less Energy Cost

With lower clamping force required, larger molds can be used in smaller presses.  Smaller presses consume less power and help to decrease the cost of manufacturing the part.

3. Less Machine Time

A more rapid cooling period helps to reduce cycle time which in turn lowers manufacturing expense per part.

4. Lower Material Cost

Less material is used to produce the part because hollow areas inside of the part are created with the gas and with less resin used, the part cost is lowered.

5. Quality Results

With gas-assist injection molding, the process is typically easier to control than conventional injection molding. A dependable, repeatable process provides consistent production results and less waste.

Common pitfalls

There are many common pitfalls when it comes to Gas Assisted Injection Moulding. Firstly, it is more complex and more expensive to set up than ordinary injection molding. if the tooling price of injection mold shocks you, gas-assisted injection molds will blow you away. Also, by introducing gas into the molding mix, this variable must be precisely tracked, managed and controlled. Without experienced machine operators and technicians, the molding process could go disastrously wrong. The control of the gas also contributes to variable wall thicknesses, especially in tight corners and this is something you generally want to avoid.

Gas Assist Tool Design

If you want to achieve high-quality results, make sure you get the tool design right.

Regardless of what injection molding process will be used, it is important to engage your molder during the early stages of part design in the design for manufacturing (DFM) phase. Tooling cost, timeline, and resulting part quality will be directly impacted by the quality and efficacy of the tool.  When determining the optimal way to mold apart, engineers will consider all product requirements including application, resin selection, and cost considerations. Mold flow analysis is used to find design constraints so that adjustments can be made. When the tooling engineer determines gas-assist is the best solution, the tool will be designed with gas channels built into the mold that will allow the addition of nitrogen gas during the molding process. Determining your molding method early will conserve tooling costs and help to maintain project timelines.  Getting your molder involved early will be critical to a cost-effective, high-quality product.

 

To learn more about this process or to receive assistance with your project, contact WIT MOLD.

The Ultimate Guide to Gas Assist Injection Molding

    What is Gas Assist Injection Molding? Gas assist injection molding (GAIM)  is an enhanced injection molding process often applied for co...